Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Si photonics has made rapid progress in research and commercialization in the past two decades. While it started with electronic–photonic integration on Si to overcome the interconnect bottleneck in data communications, Si photonics has now greatly expanded into optical sensing, light detection and ranging (LiDAR), optical computing, and microwave/RF photonics applications. From an applied physics point of view, this perspective discusses novel materials and integration schemes of active Si photonics devices for a broad range of applications in data communications, spectrally extended complementary metal–oxide–semiconductor (CMOS) image sensing, as well as 3D imaging for LiDAR systems. We also present a brief outlook of future synergy between Si photonic integrated circuits and Si CMOS image sensors toward ultrahigh capacity optical I/O, ultrafast imaging systems, and ultrahigh sensitivity lab-on-chip molecular biosensing.more » « lessFree, publicly-accessible full text available August 14, 2026
-
Free, publicly-accessible full text available June 20, 2026
-
Lighting consumes 10% of the global electricity. White laser lighting, utilizing either direct color mixing or phosphor-conversion, can potentially boost the efficiency well beyond existing light emitting diodes (LEDs) especially at high current density. Here we present a compact, universal packaging platform for both laser lighting schemes, which is simultaneously scalable to wavelength division multiplexing for visible light communication. Using commercially available laser diodes and optical components, low-speckle contrast ≤ 5% and uniform illumination is achieved by multi-stage scattering and photon recycling through a mixing rod and static diffusers in a truncated-pyramidal reflective cavity. We demonstrate a high luminous efficacy of 274 lm/Wofor phosphor-converted laser lighting and 150 lm/Wofor direct red-green-blue laser mixing, respectively, in reference to the input optical power. In the former case, the luminous efficacy achieved for practical lighting is even higher than most of the previous reports measured using integrating spheres. In the latter case of direct laser color mixing, to our best knowledge, this is the first time to achieve a luminous efficacy approaching their phosphor-conversion counterparts in a compact package applicable to practical lighting. With future improvement of blue laser diode efficiency and development of yellow/amber/orange laser diodes, we envision that this universal white laser package can potentially achieve a luminous efficacy > 275 lm/Wein reference to the input electrical power, ~ 1.5x higher than state-of-the-art LED lighting and exceeding the target of 249 lm/Wefor 2035.more » « less
-
null (Ed.)The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.more » « less
-
Low‐Temperature Synthesis of Stable CaZn 2 P 2 Zintl Phosphide Thin Films as Candidate Top AbsorbersAbstract The development of tandem photovoltaics and photoelectrochemical solar cells requires new absorber materials with bandgaps in the range of ≈1.5–2.3 eV, for use in the top cell paired with a narrower‐gap bottom cell. An outstanding challenge is finding materials with suitable optoelectronic and defect properties, good operational stability, and synthesis conditions that preserve underlying device layers. This study demonstrates the Zintl phosphide compound CaZn2P2as a compelling candidate semiconductor for these applications. Phase‐pure, ≈500 nm‐thick CaZn2P2thin films are prepared using a scalable reactive sputter deposition process at growth temperatures as low as 100 °C, which is desirable for device integration. Ultraviolet‐visible spectroscopy shows that CaZn2P2films exhibit an optical absorptivity of ≈104 cm−1at ≈1.95 eV direct bandgap. Room‐temperature photoluminescence (PL) measurements show near‐band‐edge optical emission, and time‐resolved microwave conductivity (TRMC) measurements indicate a photoexcited carrier lifetime of ≈30 ns. CaZn2P2is highly stable in both ambient conditions and moisture, as evidenced by PL and TRMC measurements. Experimental data are supported by first‐principles calculations, which indicate the absence of low‐formation‐energy, deep intrinsic defects. Overall, this study shall motivate future work integrating this potential top cell absorber material into tandem solar cells.more » « less
-
null (Ed.)We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.more » « less
An official website of the United States government
